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We have searched for second generation leptoquark (LQ) pairs in the ��+jets channel using
94 � 5 pb�1 of pp collider data collected by the D� experiment at the Fermilab Tevatron during
1993{1996. No evidence for a signal is observed. These results are combined with those from the
��+jets and ��+jets channels to obtain 95% con�dence level (C.L.) upper limits on the LQ pair
production cross section as a function of mass and �, the branching fraction of a LQ decay into a
charged lepton and a quark. Lower limits of 200(180) GeV/c2 for � = 1( 1

2
) are set at the 95% C.L.

on the mass of scalar LQ. Mass limits are also set on vector leptoquarks as a function of �.
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The observed symmetry in the spectrum of fundamen-
tal particles between leptons (l ) and quarks (q) has led
to suggestions of the existence of leptoquarks (LQ) [1].
Leptoquarks would carry both lepton and quark quan-
tum numbers, and would decay to l q systems. Although,
in principle, leptoquarks could decay to any l q combi-
nations, limits on avor-changing neutral currents, rare
lepton-family violating decays, and proton decay, sug-
gest that leptoquarks would couple only within a single
generation [2]. This implies the existence of three LQ
generations, analogous to the fermion generations in the
standard model.
At the Fermilab Tevatron, leptoquarks are predicted

[3] to be produced dominantly via gluon (g) splitting,
pp! g +X ! LQLQ+X. This Letter reports on an
enhanced search for second generation leptoquark pairs
produced in pp interactions at a center-of-mass energyp
s = 1.8 TeV. The experimental signature considered

is when both leptoquarks decay via LQ ! �q, where q
can be either a strange or a charm quark depending on
the electric charge of the LQ. The corresponding experi-
mental cross section is �2 � �(pp! LQLQ), where � is
the unknown branching fraction of a LQ to a muon (�)
and a quark (jet).
Previous studies by the D� [4] and CDF [5] collabo-

rations have considered pair production of scalar lepto-
quarks in ��+jets �nal states. These studies provide
lower limits on the mass of LQs of 119 GeV/c2 and
202 GeV/c2, respectively, for � = 1. Lower limits of
160 GeV/c2 for � = 1/2 were obtained by D� from the
��+jets �nal state [6] and by CDF from the ��+jets �-
nal state [5]. For � = 0, D� has obtained a lower limit
of 79 GeV/c2 from the ��+jets channel [7].
The present study is complementary to previous D�

searches in the ��+jets [6] and ��+jets [7] �nal states,
and greatly extends the previous search in the ��+jets
channel [4]. The sensitivity for detection of leptoquark-
s is increased by considering a larger data set that uses
the calorimeters to identify muon candidates, and em-
ploys several optimization techniques to enhance e�cien-
cy. These results are combined with results from other
decay channels to improve mass limits on LQs. (A de-
tailed description of this analysis can be found in Ref.
[8].)
The D� detector [9] consists of three major compo-

nents: an inner detector for tracking charged particles,
a uranium/liquid argon calorimeter for measuring elec-
tromagnetic and hadronic showers, and a muon spec-
trometer consisting of magnetized iron toroids and three
layers of drift tubes. Jets are measured with an ener-
gy resolution of approximately �(E)=E = 0.8/

p
E (E in

GeV). Muons are measured with a momentum resolution
of �(1=p) = 0:18(p� 2)=p2 � 0:003 (p in GeV/c).
Event samples are obtained from triggers requir-

ing the presence of a muon candidate with trans-
verse momentum p�T > 5 GeV/c in the �ducial region

j��j < 1:7 (� � � ln[tan( 1
2
�)], where � is the polar angle

of a track with respect to the z{axis taken along the
direction of the proton beam), and at least one jet can-
didate with transverse energy Ej

T > 8 GeV and j�j j <
2.5. The data correspond to an integrated luminosity of
94 � 5 pb�1 collected during the 1993{1995 and 1996
Tevatron collider runs at Fermilab [10].
Jets are measured in the calorimeters and are re-

constructed o�ine with a cone algorithm having ra-
dius R �

p
��2 +��2 = 0.5. In the �nal event sample,

two or more jets are required with Ej
T > 20 GeV within

j�j j < 3:0.
Muon candidates reconstructed in the muon spectrom-

eter are required to have a track that projects back to
the interaction vertex. The track is required to be con-
sistent with a muon of p�T > 20 GeV/c and j��j < 1:7.
In addition, the muon is required to deposit energy in
the calorimeter consistent with the passage of a min-
imum ionizing particle (MIP). To reduce backgrounds
from heavy quark production, candidate muons are re-
quired to be isolated from all jets passing the selection
criteria listed above by �R�j > 0.5 in the � � � plane.
Single muon candidates can also be tracked in the

calorimeters, where an isolated high{pT muon deposit-
s only a small fraction of its total energy. This re-
sults in a unique energy signature consisting of energy
from a MIP (EMIP) [6,11] and a large transverse energy
imbalance (E/T ) in the calorimeter that is proportional
to the muon momentum, and points in the azimuthal
direction of the EMIP. Muon candidates are restrict-
ed to the region j�j < 1:7, and are required to have
j��(EMIP{E/T )j < 0:25 radians. The kinematic quanti-
ties (e.g., p�T ) of these candidates are calculated using
the (�; �) direction of the EMIP and the component of
the E/T along the azimuthal direction of the EMIP.
Dimuon candidate events are required to have two

muons with p�T > 20 GeV/c. At least one muon must
be in the central muon spectrometer (j��j < 1:0). A sec-
ond muon with j��j < 1:7 may be identi�ed using either
the muon spectrometer or the calorimeters.
After obtaining a sample of ��+jets events, a selec-

tion is applied to the event topology. Heavy LQ pairs
are expected to have a smaller Lorentz boost, and to de-
cay more symmetrically, than the background events. To
take advantage of these di�erences, the sphericity in the
center-of-mass frame (SCM) is required to be greater than
0.05. SCM is de�ned as 1:5(�1 + �2), with �1 � �2 � �3
being the normalized eigenvalues of the momentum ten-
sor. The momentum tensor is formed from the ET (pT )
of all jets (muons) in an event, and SCM = 0 (1) corre-
sponds to a linear (spherical) topology.
Leptoquark events are simulated with the ISAJET [12]

Monte Carlo event generator for scalar LQ (SLQ), and
with PYTHIA [13] for vector LQ (VLQ). The detection ef-
�ciencies for SLQ and VLQ of the same mass are found to
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FIG. 1. Invariant mass of ��+jets events. The mass is
calculated from all muons and jets that pass the selection cri-
teria. The hatched regions give the background estimation,
the square points are the ��+jets data, and the triangular
points are the prediction for SLQ from the Monte Carlo. Un-
certainties on bins with no data points are obtained from the
68% con�dence interval.

be consistent within the uncertainties. For massive vec-
tor leptoquarks (mVLQ > 200 GeV/c2), e�ciencies are
insensitive to di�erences between minimal vector (MV,
�G = 1, �G = 0 [14]) and Yang-Mills (YM, �G = �G = 0
[14]) couplings to standard model bosons [15]. Conse-
quently, the SLQ Monte Carlo is used to represent the
shapes of distributions for both SLQ and VLQ analyses.
The leptoquark cross sections for SLQ are next-to-

leading-order calculations (NLO) [16] at a renormaliza-
tion scale � = mSLQ . The uncertainties are determined
from variation of the renormalization/factorization scale
from 2mSLQ to 1

2
mSLQ . Both types of VLQ cross sections

are calculated to leading-order (LO) at � = mVLQ [14].
The dominant backgrounds are due to W+jets and

Z+jets production, and are simulated using VECBOS [17]
at the parton level and HERWIG [18] for parton fragmen-
tation. Background due to WW production is simulat-
ed with PYTHIA [13]. Background from tt production
is simulated using HERWIG with a top quark mass of
170 GeV/c2. All Monte Carlo samples are processed
through a detector simulation program based on the
GEANT [19] package.
After initial selection, there are 53 events in the

data sample consistent with an estimated background
of 53�13 events. The distribution in invariant mass
(mevent) calculated from all muons and jets passing the
selection criteria is given in Fig. 1. The largest expect-
ed background is from W+jets (43�13 events) where
E/T from a neutrino is misidenti�ed as a second muon
when low-energy jets or calorimeter noise mimic the en-
ergy signature of a MIP. The other backgrounds are from
Z+jets events (5.6�0.9), WW events (2.3�0.9, consis-
tent with previous experimental limits at D� [20]), and

10
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Network Discriminant D NN

E
ve

nt
s/
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µµ + jets Data

FIG. 2. Output of the neural network. The network calcu-
lates a value for each event based on the inputs (see text) and
a set of internal values which are determined during network
training on SLQ and background Monte Carlo.

tt events (2.1�0.6). The uncertainty in the background
estimate is dominated by the statistical uncertainty of
the W+jets Monte Carlo and the systematic uncertain-
ty in the W+jets production cross section. The esti-
mate for the production of 200 GeV/c2 scalar leptoquark-
s that pass all of the previous selection requirements is
3.7�0.4 events. All leptoquark production estimates are
for 200 GeV/c2 SLQ, and use the NLO cross section at a
scale � = 2mSLQ .
A neural network (NN) analysis [21] is employed to

separate any possible signal from background. The
NN is trained using a mixture of W+jets, Z+jets, and
tt background Monte Carlo events, and an indepen-
dently generated SLQ Monte Carlo sample for a mass

mSLQ = 200 GeV/c2. The NN uses seven inputs: [Ej1
T ,

Ej2
T , p

�1
T , p�2T , (Ej1

T +Ej2
T ), mevent and (E

j1
T +Ej2

T )=
P
Eji
T ,

where jets (muons) are ordered in ET (pT )], and 15 nodes
in a single hidden layer to calculate an output. The net-
work output (DNN ) is shown in Fig. 2.
No evidence of a signal is seen either in the DNN dis-

criminant or in any kinematic distribution. The DNN

selection is optimized for the calculation of limits using a
measure of sensitivity [6] calculated from samples of SLQ
and background Monte Carlo. The requirement is set at
DNN > 0:9. For this selection no events are observed,
consistent with an estimated background of 0:7�0:5
events (0.49�0.16 tt, 0.15�0.04 Z+jets, 0.05�0.05WW ,
and 0+0:5

�0:0 W+jets events). The estimate for 200 GeV/c2

SLQ production is 3:3�0:3 events.
The selection criteria are applied to the Monte Car-

lo for a range of LQ masses. The leptoquark detection
e�ciencies, estimated to be 10%-26% depending on the
LQ mass, are listed in Table I, along with the 95% con�-
dence level (C.L.) upper limits on the cross sections. The
limits are calculated using a Bayesian approach, with a
at prior distribution for the signal cross section. The
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